Continued… DWDM Part VII

Yesterday, I shared on 2 options for the service providers to provide an economical solution in resolving fiberoptic capacity crisis.  Today, I’ll further share on the 3rd option, DWDM.

Option #3

The third choice for service providers is dense wavelength division multiplexing (DWDM), which increases the capacity of embedded fiber by first assigning incoming optical signals to specific frequencies (wavelength, lambda) within a designated frequency band and then multiplexing the resulting signals out onto one fiber. Because incoming signals are never terminated in the optical layer, the interface can be bit-rate and format independent, allowing the service provider to integrate the DWDM technology easily with existing equipment in the network while gaining access to the untapped capacity in the embedded fiber.

DWDM combines multiple optical signals so that they can be amplified as a group and transported over a single fiber to increase capacity as shown in the following diagram.

Increased Network Capacity - WDM

Increased Network Capacity - WDM

As shown above and still referring to the highway analogy, DWDM, on the other hand, relates to the accessing the unused lanes on the highway. Another way to increase auto throughput is to add more lanes that is equivalent to wavelength multiplexing. Eeach signal carried can be at a different rate (OC-3, OC-12, OC-24, etc.) and in a different format (SONET, ATM, data, etc.) For example, a DWDM network with a mix of SONET signals operating at OC–48 (2.5 Gbps) and OC–192 (10 Gbps) over a DWDM infrastructure can achieve capacities of over 40 Gbps. A system with DWDM can achieve all this gracefully while maintaining the same degree of system performance, reliability, and robustness as current transport systems – or even surpassing it.  Future DWDM terminals will carry up to 80 wavelengths of OC–48, a total of 200 Gbps, or up to 40 wavelengths of OC–192, a total of 400 Gbps—which is enough capacity to transmit 90,000 volumes of an encyclopedia in one second. Wow!

How is this possible?

The technology that allows this high-speed, high-volume transmission is in the optical amplifier. Optical amplifiers operate in a specific band of the frequency spectrum and are optimized for operation with existing fiber, making it possible to boost lightwave signals and thereby extend their reach without converting them back to electrical form. Demonstrations have been made of ultrawideband optical-fiber amplifiers that can boost lightwave signals carrying over 100 channels (or wavelengths) of light. A network using such an amplifier could easily handle a terabit of information. At that rate, it would be possible to transmit all the world’s TV channels at once or about half a million movies at the same time.  Wow! Wow!

In next post, I’ll share again on the “highway analogy” but using different diagram that I believe is more appealing for clearer understanding on TDM-DWDM relationship.

Source: Dense Wavelength Division Multiplexing (DWDM) by The International Engineering Consortium (IEC)

To be continued… DWDM Part VIII

Share